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Abstract

Theoretical consideration has been made of the non-isothermal kinetics of consecutive reactions

based on the superposition principle. In the model the first reaction product reacts to form the final

product and the two reactions proceed independently. The amount of the first reaction product and

the production rate of the final product have been obtained as a function of time for isothermal cases

and as a function of the reduced times for non-isothermal cases.
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Introduction

When thermoanalytical tools are limited to thermogravimetry, differential thermal

analysis and differential scanning calorimetry, we can only observe changes of bulk

physical properties, i.e., mass and enthalpy. With these tools, kinetic analysis can be

precisely done only for a simple reaction, in which a single elementary process pro-

ceeds [1]. The one exception is the Avrami-Erofeev model for nucleation-and-growth

processes in solid reactions and crystallizations. Their non-isothermal kinetics and a

method to analyze such thermoanalytical data were published elsewhere [2, 3].

Nowadays, we have more powerful tools, such as thermophotometry with a Fou-

rier transform IR spectrometer (FTIR) and evolved gas analysis (EGA) with a

mass-spectrometer (MS) and/or an FTIR, by which we can observe chemical struc-

tural changes and/or we can determine volatilized products together with their volati-

lisation rates continuously. Therefore, we now have tools with which we can kinetic-

ally analyze other complex reactions consisting of multiple elementary processes,

such as parallel competitive reactions and consecutive reactions. The present author

and his co-worker published a method to kinetically analyze thermoanalytical data

for parallel competitive reactions [4].

Consecutive reactions have been investigated for many years. For instance

Braun and Rothman kinetically analyzed isothermal mass loss data of a consecutive
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reaction, i.e., pyrolysis of oil shale [5]. By introducing a thermal induction-time for

the sample to heat up to the desired temperature, the data were well analyzed by a

model of consecutive reactions, in which both the first and second reactions are

first-order reactions. Similar studies on isothermal consecutive reactions are found in

literature [6].

For non-isothermal kinetics of consecutive reactions, simulations have been

mainly made and thermoanalytical curves have been calculated for specific cases to

observe the effect of kinetic parameters on the calculated thermoanalytical curves

[7–9]. Marcu and Segal [10] proposed a statistical method to analyze thermo-

analytical data, in which kinetic parameters are estimated so as to minimize the dif-

ference between the data and the corresponding values calculated with the estimated

parameters, and the best fitted estimation is obtained by iterative calculation. How-

ever, general and analytical equations for non-isothermal kinetics of consecutive re-

actions have not yet been proposed and they are necessary to prepare a method to ana-

lyze their data for future needs.

The author has made the first attempt to derive these equations for the

non-isothermal kinetics of consecutive reactions by applying the superposition prin-

ciple, and the results are presented in this paper. Controlled rate thermal analysis

(CRTA) provides high resolution of reactions and some steps of consecutive reac-

tions, such as multiple step dehydration, can be observed separately [10]. However,

non-isothermal methods of obtaining the kinetics of consecutive reactions are still

useful for thermoanalytical observation of consecutive reactions, because the temper-

ature separation of some consecutive reactions might not be so large as to separately

observe them, especially for cases where the second reaction proceeds faster than the

first reaction. Non-isothermal methods are also useful for analysis in practical pro-

cesses of these types of reactions.

Models

The types of reactions dealt with in this paper are as follows;

X Y U→ + ↑ (1)

Y Z V→ + ↑ (2)

where X, Y, U, Z and V are respectively, the original reactant, the non-volatile prod-

uct of the first reaction, the volatile product of the first reaction, the non-volatile

product of the second reaction and the volatile product of the second reaction. The

first reaction and the following second reaction are independent of each other and the

extent of reaction of one has no influence on the other.

The kinetic equation for the first reaction is:

d

d

1α α
t

=k f1 1 1( ) (3)
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and, when the second reaction proceeds without formation from X, the equation for

the decreasing rate of Y by this reaction is:

d

d

2α α
t

=k f2 2 2( ) (4)

where

k A
E

i i
i= −






exp

RT
(5)

and α, t, k, f, A, E, R and T are the extent of the reaction, the time, the rate constant, the

function expressing the reaction mechanism, the pre-exponential factor, the activation

energy, the gas constant and the absolute temperature, respectively, the subscripts indi-

cating the reactions. The fractional amount of the reactant X is equal to (1–α1).

Isothermal equations

First, let us consider the decrease in the amount of the product Y formed at a certain

time, τ. The residual amount of this portion of Y at the time t, is expressed by y(τ,t).
At a time τ,

y( , )τ τ α

τ

=







d

d

1

t
t

=

(6)

In Eq. (3) dα1/dt is given as a function of α1, but it can also be expressed as a

function of time. Namely, if

d

d

1α α
t

=k f1 1 1( ) (3)

then

d
d1

1

α
αf

t
( )1

1=∫∫ k (7)

and since the reaction proceeds isothermally, it is expressed for simplicity as follows:

F k t1( )α 1 1= (8)

where F1(α1) is equal to d 1α α/ ( )f1 1∫ . Thus, α1 can be expressed as a function of the

time, and the derivative of α1 can also be a function of k1t so that we have the follow-

ing equation and it is equal to y(τ,τ)

d

d

1

t=

α τ τ τ
τt







 = =f k y1

1

1

– ( ) ( , ) (9)

where f k t1

1

1

– ( ) is similar to the function of f1(α1) but dα1/dt is given as a function of

k1t. F(α), f(α) and f–1(kt) are tabulated in Table 1.
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Table 1 Forms of kinetic functions for different reaction mechanisms

Mechanism f(α)=(dα/dt)/k F(α)= dα α/ ( )f∫ f–1(kt)=(dα/dt)* F–1(kt)=α*

n-th order (n≠1) (1–α)n {(1–α)1–n–1}/(n–1) {1+(n–1)kt}n/(1–n) 1–{1+(n–1)kt}1/(1–n)

1st order 1–α –ln(1–α) exp(–kt) 1–exp(–kt)

Phase boundary-controlled
contracting interface (cylinder)

(1–α)–1/2/2 1–(1–α)–1/2 (1–kt)/2 1–(1–kt)–2

Phase boundary-controlled
contracting interface (sphere)

(1–α)–2/3/3 1–(1–α)–1/3 (1–kt)2/3 1–(1–kt)–3

* The term kt in these equations can be replaced by Aθ



Next, we shall calculate y(τ,t)/y(τ,τ ), the decreasing ratio of y at the time t to y at

the time τ, and it can be derived by solving Eq. (4):

d
d2α

αf
t

2 ( )2

2=∫∫ k (10)

and this can be expressed for simplicity as follows:

F k2 2 2( )α =∫ dt (11)

where F2(α2) is equal to d 2α α/ ( ).f 2 2∫ The range of this integration is from t=τ to the

time t=t, and α2 can be expressed as function of k2t. Therefore:

y t

y
F k t k

( , )

( , )
( )–τ

τ τ
τ= −2

1

2 2 (12)

where F k t2

1

2

– ( ) is the inverse function of F2(α2) and F k t2

1

2

– ( ) is equal to α2. F k t2

1

2

– ( )

is listed in Table 1. In Eq. (12), it is implicitly assumed that the decreasing amount of

Y formed at one value of τ proceeds independently from Y formed at a different value

of τ. Thus,

y t f k F k t k( , ) ( ) ( )– –τ τ τ= −1

1

1 2

1

2 2 (13)

Then we have the fraction of total Y at the time t, Y(t), as follows:

Y d
t

( ) ( , )t y t=∫ τ τ
0

(14)

and this logic is illustrated in Fig. 1. Thus, we have the general isothermal equation

for consecutive reactions of the above model:

Y d
t

( ) ( ) ( )– –t f k F k t k= −∫ 1

1

1 2

1

2 2

0

τ τ τ (15)

The rate of volatilisation of V may be derived. The decreasing rate of the prod-

uct Y formed at τ is equal to the formation rate of V from the product Y formed at τ. If

it is expressed as ν′ (τ,t), then

ν τ τ τ′ = −( , ) ( , ) ( )–t y t f k t k2

1

2 2 (16)

and

dV

d t=t

t

t







 = − −∫ f k F k t k f k t k1

1

1

0

2

1

2 2 2

1

2 2

– – –( ) ( ) (τ τ τ τ)d (17)

where dV/dt is the fractional volatilisation rate of V. These equations [Eqs (15)

and (17)] can be treated by Laplace transform.
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General equations

The above Eqs (15) and (17) are the equations for isothermal consecutive reactions,

and they can also be applied to non-isothermal cases, taking account of the tempera-

ture change and the temperature dependence of the rate constant. Therefore, kt in

these equations should be replaced by k td∫ [Eqs (7), (8), (10) and (11)]. This can be

done by introducing the reduced time, θ [1], because

θ i
i d= −






∫exp

E

RT
t (18)

and kit or k tid∫ can be replaced by Aiθi. Furthermore,

θ θ (τ
τ

2 2
1

0

1

0

− = −





 − −






∫ ∫) exp d exp d

t
E

RT

E

RT
t t (19)

= −





∫exp

E

RT

1

τ

t

dt (20)

Thus, we have

Y( ) [ ( )] [ ( )]exp– –θ θ τ θ θ τ
θ

2 1

1

1 1

0

2

1

2 2 2 2
1

2

= − 
∫ f A F A A

E

RT




 d 2θ τ( ) (21)

and

dV

dt







 =

= −

=

∫

θ θ

θ

2θ τ θ θ τ

2

2

1

1

1 1

0

2

1

2 2 2f A F A A– –[ ( )] [ ( )] [ ( )]exp ( )–f A A
E

RT
2

1

2 2 2 2
1θ θ τ θ τ− 






 d 2

(22)
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Fig. 1 Schematic drawing for change of reactants and products. The solid line is the
curve for the production rate of Y (or the decreasing rate of X), and the broken
lines are for y’s at different τ’s. The amount of Y is the sum of the broken lines



where θ1 and θ 2 are the reduced times for the first and second reactions, respectively,

and θ i (τ) means that the reduced time is that at t=τ.

Discussion

As seen in the above, the superposition principle is applied to derive Eqs (15), (17),

(21) and (22), and this means that the decreasing rate of Y formed at τ is not influ-

enced by Y formed at a different τ′ and vice versa. In this principle, the rate of the first

reaction is not influenced by the product of the second reaction and the rate constant

of the second reaction is not influenced by the extent of the first reaction. These pre-

requisites are implicitly assumed in the above derivation.

A reaction consistent with these prerequisites is the case that the first reaction is

every type of reaction except diffusion-controlled reactions and the second reaction is

a first-order reaction. Diffusion-controlled reactions are excluded, because the diffu-

sion constant must be changed by the second reaction. One boundary-controlled, con-

tracting interface reaction followed by another are simple consecutive reactions for

kinetics, but the logic is different from that in this paper.

Two reduced-times are involved in the non-isothermal equation, as seen in

Eqs (21) and (22), so that the consecutive reactions under discussion are a system of

multiple dimensions of time, and the relation between them is dependent on the tem-

perature change. Therefore, we cannot calculate a priori these integrations as they

are, but only for specific cases, such as constant rate heating.

When the sample is heated at a constant rate, we have the next relation, which

may be useful in the calculation:

θ
θ

1

2

2

1

2 1= −







E

E

E E

RT
exp (23)

because the reduced time can be approximated as follows [12]:

θ
βi

i

i= −







RT

E

E2

exp
RT

(24)

d

d

1

2

θ
θ

= −





exp

E E

RT

2 1 (25)

We can measure the volatilisation rates of U and V by EGA, for instance with

MS and FTIR, and we can measure the amount of X, Y and Z in some cases by FTIR.

These data can be combined to analyze the data and this may provide an easier way

for analyzing the data.

The above consideration and the derived equations provide insight into the ki-

netics of the processes. For instance, when we observe the volatilisation rate of U, the

kinetics becomes much simpler. The first reaction can be kinetically analyzed by us-

ing the volatilisation rate of U. Moreover, after the volatilisation rate of U becomes

negligibly small, the decreasing rate of Y and the volatilisation rate of V follow their
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original kinetics [Eq. (4)], because the second reaction proceeds without the influ-

ence of the first reaction. Furthermore, the following can be deduced from Eqs (15),

(17), (21) and (22). If we control the volatilisation rate of U at a fixed rate, as in

CRTA, the value of the f1

1– function is also controlled at the fixed value. Thus the de-

creasing rate of Y and the volatilisation rate of V follow relatively simple equations

with one reduced time.

Other devices in experimental methods, such as the mode of the temperature

change, and proper mathematical approximation should provide some methods for

kinetic analysis in the future.

* * *
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technical Laboratory and Prof. Iwao Amasaki of Chiba Institute of Technology for their kind discus-

sion on this paper.
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